Direct photonic-plasmonic coupling and routing in single nanowires.
نویسندگان
چکیده
Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO(2) nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.
منابع مشابه
Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits.
We report direct coupling of plasmonic and photonic nanowires using ultracompact near-field interaction. Photon-plasmon coupling efficiency up to 80% with coupling length down to the 200 nm level is achieved between individual Ag and ZnO nanowires. Hybrid nanophotonic components, including polarization splitters, Mach-Zehnder interferometers, and microring cavities, are fabricated out of couple...
متن کاملOctave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling
Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or ...
متن کاملPlasmonic Waveguide-Integrated Nanowire Laser
Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technologies. Despite significant advances in their fundamental aspects, the integration within scalable phot...
متن کاملTuning the hybridization of plasmonic and coupled dielectric nanowire modes for high-performance optical waveguiding at sub-diffraction-limited scale
We report the realization of low-loss optical waveguiding at telecommunication wavelength by exploiting the hybridization of photonic modes guided by coupled all-dielectric nanowires and plasmon waves at planar metal-dielectric interfaces. The characteristics of the hybrid plasmon polaritons, which are yielded by the coupling between two types of guided modes, can be readily tuned through engin...
متن کاملHybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators.
We show that efficient coupling of lightwave is possible to an individual plasmonic nanoresonator in a hybrid plasmonic-photonic resonator structure. The proposed hybrid structure consists of a photonic microresonator strongly coupled to a plasmonic nanoresonator. The theory and simulation results show that more than 73% of the input power in the waveguide can be coupled to the localized resona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 50 شماره
صفحات -
تاریخ انتشار 2009